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Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap

Claude M. Dion and Eric Cance`s
CERMICS, E´cole Nationale des Ponts et Chausse´es, 6 & 8 avenue Blaise Pascal, Cite´ Descartes, Champs-sur-Marne,

77455 Marne-la-Valle´e, France
~Received 5 July 2002; published 15 April 2003!

We study the numerical resolution of the time-dependent Gross-Pitaevskii equation, a nonlinear Schro¨dinger
equation used to simulate the dynamics of Bose-Einstein condensates. Considering condensates trapped in
harmonic potentials, we present an efficient algorithm by making use of a spectral-Galerkin method, using a
basis set of harmonic-oscillator functions, and the Gauss-Hermite quadrature. We apply this algorithm to the
simulation of condensate breathing and scissor modes.
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I. INTRODUCTION

The experimental realization of Bose-Einstein conden
tion @1–3# has prompted much work on the study of t
dynamics of these condensates. From the theoretical
many interesting results have been obtained using the Gr
Pitaevskii equation~GPE! @4–6#,

i\
]C

]t
5F2

\2

2m
¹21Vext1

4p\2aN

m
uCu2GC, ~1!

with the normalization conditioniC(t)iL251; t, to de-
scribe the order parameterC ~also called thecondensate
wave function! of N condensed bosons of massm, interacting
via a contact potential described by the scattering lengta,
and eventually confined by an external potentialVext. Even
though the Gross-Pitaevskii equation is based on the
proximation that all bosons are in the condensed phaseT
50 K), direct comparison between theoretical and exp
mental results have shown that, in many cases, solution
the GPE contain the essential physics of the underlying p
nomena @7–10#. This nonlinear Schro¨dinger equation
~NLSE! has been used, in its time-dependent form, to inv
tigate many aspects of the dynamics of Bose-condensed
such as the formation of vortices@11#, the interference be
tween condensates@12#, of the possibility of creating atom
lasers@13,14#, to mention only a few.

Most of these and other numerical studies of the tim
dependent GPE are based on grid methods, i.e., discretiz
spatial coordinates on a grid of points, the resulting differ
tial equation being usually solved by Crank-Nicholson
split-operator Fourier methods~see, e.g., Refs.@15–18#!. We
must point out that, while much care must be taken in so
ing Eq. ~1! because of the nonlinearity, we find, to our d
may, that many authors give results calculated with the tim
dependent GPE without even specifying what method t
have used for their numerical simulation.

In this paper, we wish to focus our attention on the ca
where the Bose-Einstein condensate is in a~possibly aniso-
tropic! harmonic trap, i.e.,

Vext~X,Y,Z!5
1

2
m~vx

2X21vy
2Y21vz

2Z2!, ~2!
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which is the case for most experimental setups@19,20#. The
method we propose is based on the spectral decompositio
C on a basis of harmonic-oscillator wave functions. In su
a representation, the kinetic1 trapping potential part of the
Hamiltonian is diagonal. The nonlinear part is computed
forward and backward transformations from the spectral t
grid representation. By judicious use of the Gauss-Herm
quadrature, this can lead to an algorithm that is more e
cient than those based on grid methods. Although this is a
to discrete variable representation~DVR! methods based on
Hermite polynomials, which have been successfully used
the time-independent and time-dependent GPE@21,22#, our
method is distinct, since our Hamiltonian is expressed in
spectral representation for both the kinetic and potential
erators.

We expose in Sec. II our spectral method and the resul
algorithm. We then present different time-evolution schem
that can be used in combination with the spectral method.
finally give in Sec. IV some results that can be obtained fr
the numerical simulation of the time-dependent GP
namely, the study of condensate breathing and scissor mo

II. SPACE DISCRETIZATION

To simplify the calculation, we will first rescale Eq.~1! in
the three spatial dimensions (X,Y,Z) and in time,

X5S \

mvx
D 1/2

x, ~3a!

Y5S \

mvy
D 1/2

y, ~3b!

Z5S \

mvz
D 1/2

z, ~3c!

t5
1

vz
t. ~3d!

We also introduce a new wave functionc defined as

C~ t,X,Y,Z!5Ac~t,x,y,z!,

and, considering the normalization condition
©2003 The American Physical Society06-1
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E
R3

uC~ t,X,Y,Z!u2dXdYdZ51;t,

we choose

A5S m

\ D 3/4

~vxvyvz!
1/4,

such that

E
R3

uc~t,x,y,z!u2dxdydz51.

The Gross-Pitaevskii equation therefore becomes

i
]c

]t
5Fvx

vz
S 2

1

2
¹x

21
x2

2 D1
vy

vz
S 2

1

2
¹y

21
y2

2 D
1S 2

1

2
¹z

21
z2

2 D1lucu2Gc, ~4!

with

l54paNS m

\

vxvy

vz
D 1/2

. ~5!

Coordinatez should be chosen such thatvz is the greatest of
the three frequencies@this is related to the arbitrary choice o
the scaling factor in Eq.~3d!#.

As all the physical parameters have been absorbed in
nonlinear parameterl, calculations with the samel can cor-
respond to results for different species, but in diverse exp
mental conditions. We can define acceptable lower and up
bounds forl by considering the effective range of the d
ferent physical parameters. Considering only cases where
interparticle interaction is repulsive, i.e.,a.0 and therefore
l.0, at the lower end we can consider a small4He* con-
densate (m54.0 amu,a5302 a.u.@23#! of N5103 atoms in
a highly anisotropicvxvy /vz52p31021 Hz trap, giving
l'1.3, while for a biggerN;106 condensate of heavy a
oms such as87Rb (m586.9 amu,a5106 a.u.@24#!, l can
reach 105 for isotropic traps. In the following, we will re-
strict our study tol in the range 1 –103, considering that the
Thomas-Fermi approximation can be used for greater va
of l @21#.

A. The spectral-Galerkin method in 1D

For pedagogical purposes, we first explain our numer
method on the simple case of the one-dimensional~1D!
NLSE

i
]c

]t
~ t,x!5H0c~ t,x!1luc~ t,x!u2c~ t,x!, ~6!

with

H052
1

2

]2

]x2
1

1

2
x2.
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Extensions to the three-dimensional case will be detailed
the following section.

Denoting by c(t) the function x°c(t,x), it can be
proven@25# that if

c0PXªH xPL2~R!, E
R
U]x

]xU
2

,1`,

E
R
x2ux~x!u2dx,1`J ,

Eq. ~6! with initial condition c0 has a unique solution in
C0(@0,1`@ ,X)ùC1

„@0,1`@ ,L2(R)… and that both theL2

norm

ic~ t !iL25F E
R
uc~ t,x!u2dxG1/2

,

and the energy

E5„H0c~ t !,c~ t !…1
l

2ER
uc~ t,x!u4dx

are conserved by the dynamics. A variational formulation
Eq. ~6!, supplemented by the initial conditionc(t50)
5c0, wherec0PX reads

SearchcPC0~@0,T#,X!ùC1
„@0,T#,L2~R!… such that

;xPX, i
d

dt
„c~ t !,x…5„H0c~ t !,x…1l„uc~ t !u2c~ t !,x…,

~7!

c~0!5c0 .

Numerical solutions can then be obtained by approximat
problem ~7! with a Galerkin method: afinite-dimensional
subspaceXN of the infinite-dimensional vector spaceX being
given, we consider

SearchcNPC1~@0,T#,XN! such that

;xNPXN ,

i
d

dt
„cN~ t !,xN…5„H0cN~ t !,xN…1l„ucN~ t !u2cN~ t !,xN…,

~8!

cN~0!5c0 .

Denoting by (f0 , . . . ,fN) an orthonormal basis ofXN
for the L2 scalar product and byC(t)5@cn(t)#0<n<N the
vector of CN11 collecting the coefficients ofcN(t) in the
basis (f0 , . . . ,fN), i.e.,

cN~ t,x!5 (
n50

N

cn~ t !fn~x!,

problem~8! can be reformulated as

SearchCPC1~@0,T#,CN11! such that
6-2
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SPECTRAL METHOD FOR THE TIME-DEPENDENT . . . PHYSICAL REVIEW E 67, 046706 ~2003!
i
dC

dt
~ t !5hC~ t !1lF„C~ t !…,

~9!
C~0!5C0 ,

whereC0 are the coefficients ofc0 andh the matrix ofH0 in
the basis (f0 , . . . ,fN)

@C0#n5~c0 ,fn!L2, hnm5~H0fm ,fn!,

and where the functionF is defined by

F~C!n5 (
k,l ,m50

N

I klmnck* clcm , ~10!

with

I klmn5E
R
fk* f lfmfn* .

The efficiency of a direct implementation@26,27# of the
Galerkin method described above is very poor: the calc
tion of the integralsI klmn ~which can be precomputed if th
basis is small enough that the integrals can be store
memory! scales asO(N4Np), where Np is the number of
grid points of the quadrature method, and the computa
cost for one evaluation of the functionF scales asN4 @for
each of theN coefficients,O(N3) operations are needed#.

Our aim is to show that the Galerkin method becom
very efficient if (f0 , . . . ,fN) are theN11 lowest eigen-
modes of the harmonic oscillatorH0. In this case, indeed, th
vector F(C) can be computedexactly ~up to round-off er-
rors! in O(N2) operations. Let us recall that the eigenmod
(fn)nPN of H0 read

fn~x!5Hn~x!e2x2/2,

whereHn(x) is the nth Hermite polynomial@28#, and that
they satisfy

H0fn5Enfn with En5n1
1

2
.

In such a basis, the matrixh is therefore diagonal:h
5diag(E0 , . . . ,En). In addition, for anyCPCN11, one has

F~C!n5E
R
uc~x!u2c~x!fn~x!dx, ~11!

wherec(x)5(n50
N cnfn(x). The key point is now that for

any n<N the integrand in Eq.~11! is of the form
Q(x)e22x2

, whereQ(x) is a polynomial of degree lower o
equal to 4N; each of theN11 integrals can therefore b
computedexactlywith a Gauss-Hermite quadrature formu
involving 2N Gauss points@29#. More precisely, we have
for any polynomialQ of degree lower or equal to 4N,

E
2`

1`

Q~x!e2x2
dx5 (

k51

2N11

wkQ~xk!,
04670
-
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where$xk% are the roots of the Hermite polynomialH2N11
and where$wk% are convenient weights@30#. By a change of
variable in integral~11!, it follows that

F~C!n5 (
k51

2N11 S wke
xk

2

A2
D uc~xk /A2!u2c~xk /A2!fn~xk /A2!.

Spectral-Galerkin methods are usually not very efficie
@31#; but they can be in the specific case of the NLSE, we
interested in because of the special form of the nonlinea

Let us now denote byPPM(N11,2N11) the matrix
collecting the values of the basis functions (fn)0<n<N at the
Gauss points (xk)1<k<2N11:

Pnk5fn~xk /A2!,

and byw̃k5wke
xk

2
/A2. An efficient algorithm for the com-

putation ofF(C) for a givenCPCN11 reads the following.
~1! Compute the vectorCPC2N11 defined by

C5PT
•C.

~2! Compute the vectorJPC2N11 coefficient by coeffi-
cient along formula

Jk5w̃kuCku2Ck .

~3! Compute

F~C!5P•J.

The vectorsC and C are the representation of the wav
functionc in the spectral basis$fn%0<n<N and in real space
~at the 2N11 Gauss points$xk /A2%), respectively. Steps~1!
and~3! of the above algorithm scale quadratically inN ~these
are matrix-vector products!, and step~2! scales linearly inN.
We therefore end up with an algorithmic complexity
O(N2).

In practice, the functionC°F(C) is called one or severa
times at each time step; of course, the matrixP as well as the
weightsw̃k can be precomputed once and for all and sto
in memory.

B. The spectral-Galerkin method in 3D

Let us now turn to the 3D setting and consider the r
caled equation

i
]c

]t
~ t,x,y,z!5Fvx

vz
H0~x!1

vy

vz
H0~y!1H0~z!Gc~ t,x,y,z!

1luc~ t,x,y,z!u2c~ t,x,y,z!, ~12!

with

H0~x!52
1

2

]2

]x2
1

1

2
x2, H0~y!52

1

2

]2

]y2
1

1

2
y2,

H0~z!52
1

2

]2

]z2
1

1

2
z2.
6-3
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C. M. DION AND E. CANCÈS PHYSICAL REVIEW E67, 046706 ~2003!
For l>0, a global-in-time existence and uniqueness resu
available for Eq.~12! with initial conditionc(t50)5c0 and

c0PX5$xPL2~R3!, “xP@L2~R3!#3,

~x21y21z2!1/2xPL2~R3!%.

On the other hand, it is well known that finite-time blow u
may be observed forl,0 and for some initial conditions
@25#. As stated above, we focus here on the case wherl
>0.

Following the same lines as in the Sec. II A, the appro
mated wave functioncN(t) is expended on the spectral te
sor basis set

„fnx
~x!fny

~y!fnz
~z!…0<nx<Nx ,0<ny<Ny ,0<nz<Nz

.

One therefore has

cN~ t,x,y,z!

5 (
nx50

Nx

(
ny50

Ny

(
nz50

Nz

cnxnynz
~ t !fnx

~x!fny
~y!fnz

~z!.

~13!

The equation satisfied by the three index tensorC
5@cnxnynz

# in the Galerkin approximation formally has th
same expression as in 1D,

i
dC

dt
~ t !5hC~ t !1lF„C~ t !…,

the linear operatorh now being defined by

@hC#nxnynz
5Enxnynz

cnxnynz
,

with

Enxnynz
5

vx

vz
S nx1

1

2D1
vy

vz
S ny1

1

2D1S nz1
1

2D ,

and the nonlinear functionF(C) by

F~C!] nxnynz
5E

R3
uc~x,y,z!u2c~x,y,z!fnx

~x!fny
~y!

3fnz
~z!dxdydz,

wherec(x,y,z) is given by Eq.~13!.
Let us denote by $xk%1<k<2Nx11 , $yk%1<k<2Ny11 ,

$zk%1<k<2Nz11 the roots of the Hermite polynomial

H2Nx11 , H2Ny11 , H2Nz11 and $wk
x%1<k<2Nx11 ,

$wk
y%1<k<2Ny11 , $wk

z%1<k<2Nz11 the associated summatio

weights. Let us also introduce the matricesPxPM(Nx
11,2Nx11), PyPM(Ny11,2Ny11), PzPM(Nz11,2Nz
11) defined by
04670
is

-

@Px#nxkx
5fnx

~xkx
/A2!, @Py#nyky

5fny
~yky

/A2!,

@Pz#nzkz
5fnz

~zkz
/A2!,

and the weights

w̃kx

x 5
wkx

x exkx

2

A2
, w̃kz

y 5
wky

y eyky

2

A2
, w̃kz

z 5
wkz

z ezkz

2

A2
.

The following algorithm for the computation ofF(C) scales
in O(NNxNyNz) whereN5max(Nx ,Ny ,Nz).

~1! Set CSSS5C.

~2! Compute Cnxnykz

SSR 5 (
nz50

Nz

@Pz#nzkz
Cnxnynz

SSS ,

O~NxNyNz
2! operations.

~3! Compute Cnxkykz

SRR 5 (
ny50

Ny

@Py#nyky
Cnxnykz

SSR ,

O~NxNy
2Nz! operations.

~4! Compute Ckxkykz

RRR 5 (
nx50

Nx

@Px#nxkx
Cnxkykz

SRR ,

O~Nx
2NyNz!operations.

~5! Compute Jkxkykz

RRR 5w̃kx

x w̃ky

y w̃kz

z uCkxkykz

RRR u2Ckxkykz

RRR ,

O~NxNyNz! operations.

~6! Compute Jkxkynz

RRS 5 (
kz51

2Nz11

@Pz#nzkz
Jkxkykz

RRR ,

O~NxNyNz
2! operations.

~7! Compute Jkxnynz

RSS 5 (
ky51

2Ny11

@Py#nyky
Jkxkynz

RRS ,

O~NxNy
2Nz! operations.

~8! Compute Jnxnynz

SSS 5 (
kx51

2Nx11

@Px#nxkx
Jkxnynz

RSS ,

O~Nx
2NyNz! operations.

~9! SetF~C!5JSSS.

In the above formulation, the superscriptsS andR stand for
spectralandreal spacerepresentations, respectively. In oth
words, steps~2!–~4! constitute the successive transformati
of the wave function from the spectral basis to a spatial r
resentation on the series of points of the Gauss-Herm
6-4
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SPECTRAL METHOD FOR THE TIME-DEPENDENT . . . PHYSICAL REVIEW E 67, 046706 ~2003!
quadrature. The nonlinear term of the Hamiltonian is th
calculated in this spatial representation@step~5!#, while steps
~6!–~8! correspond to the inverse transform back to the sp
tral basis. It is this procedure of forward and backward tra
formation that allows us to obtain a much better scaling th
the implementation of Eq.~10!.

The scaling of the above algorithm@O(N4) if Nx5Ny
5Nz] has to be compared with the scaling of fast Four
transform based algorithms which scale inO„Np

3log2(Np)…,
where Np is the number of grid points per direction. Th
main interest of the spectral method is that for a sim
accuracy, the number of spectral basis functions per direc
~here denoted byN) can usually be chosen much small
than the numberNp of grid points per direction. This is es
pecially true when the problem considered displays a s
metry in one or more of the directions, in which case t
basis set used in the Galerkin approximation Eq.~13! can be
restricted to even harmonic-oscillator functions~in the corre-
sponding direction!. We will come back on this importan
feature of the spectral method in Sec. IV.

C. Exploiting spherical or cylindrical symmetry

When vx5vy5vz the one-particle Hamiltonian pos
sesses spherical symmetry. If the initial conditionc05c(t
50) has the same symmetry, then the wave functionc(t) is
spherical symmetric for anyt.0: c(t,x,y,z)5c(t,r ),
wherer 5(x21y21z2)1/2 is the radial coordinate. Equatio
~4! leads to the effective 1D dynamics

i
]c

]t
5F2

1

2r 2

]

]r S r 2
]

]r D1
r 2

2
1lucu2Gc. ~14!

Let us now define the function

x~ t,r !5HA2prc~ t,r ! if r .0

2A2prc~ t,2r ! if r ,0.

It is easy to check thatx actually satisfies the 1D NLSE

i
]x

]t
5H0x1l

uxu2

2pr 2
x.

Besides, for anyt.0 the functionx(t): r °x(t,r ) is odd
and belongs toL2(R) since

E
2`

1`

ux~ t,r !u2dr5E
0

1`

4pr 2uc~ t,r !u2 dr51.

It can thus be expanded on theodd modes of the harmonic
oscillator:

x~ t,r !5 (
n50

1`

cn~ t !f2n11~r !.

A spectral-Galerkin approximation can now be used. T
vector C(t)PCN11 collecting the coefficients„ck(t)…0<k<N
of the approximated wave function
04670
n

c-
-
n

r

r
n

-
e

e

xN~ t,r !5 (
n50

N

cn~ t !f2n11~r !,

obeys once again a dynamics of the form

i
dC

dt
~ t !5hC~ t !1lF„C~ t !….

Here

h5diag~E2n11! with E2n1152n1
3

2

and

@F~C!#n5E
R

ux~r !u2

2pr 2
x~r !f2n11~r !dr,

where x(r )5(n50
N cnf2n11(r ). As for any 0<n<N,

f2n11(r )5rP2n(r )e2r 2/2 whereP2n is a polynomial of de-
gree equal to 2n, it follows that the above integrals can b
computed exactly with 4N Gauss points.

Let us now turn to the cylindrical symmetry when~for
instance! vx5vy and when the initial data readsc0(x,y,z)
5c0(r ,z) with r 5(x21y2)1/2. In this case, the cylindrica
symmetry is preserved by the dynamics so that for ant
.0, c(t,x,y,z)5c(t,r ,z) and the time evolution of
c(t,r ,z) is then governed by the 2D equation

i
]c

]t
5Fvx

vz
H 2

1

2r

]

]r S r
]

]r D1
r 2

2 J 1S 2
1

2

]2

]z2
1

z2

2 D
1lucu2Gc, ~15!

set on the spatial domainR13R. Defining a new function
x(t,r ,z) on the space domainR2 by

x~ t,r ,z!5H c~ t,r ,z! if r .0

c~ t,2r ,z! if r ,0,

it occurs thatx satisfies

i
]x

]t
5Fvx

vz
S 2

1

2

]2

]r 2
1

r 2

2 D 1S 2
1

2

]2

]z2
1

z2

2 D 2
vx

vz

1

2r

]

]r

1luxu2Gx ~16!

on the space domainR2, and that, by construction, the func
tion r °x(t,r ,z) is even. A spectral-Galerkin approximatio
is obtained by expanding the wave function on the spec
tensor basis set

„f2nr
~r !fnz

~z!…0<nr<Nr ,0<nz<Nz
.

6-5
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C. M. DION AND E. CANCÈS PHYSICAL REVIEW E67, 046706 ~2003!
The coefficients (cnrnz
)0<nr<Nr ,0<nz<Nz

of the expansion are
solution of an equation of the same form as above,

i
dC

dt
~ t !5hC~ t !1lF„C~ t !….

The main difference is that in this case, the linear maph
takes into account the operator2(1/2r )(]/]r ):

@hC#nrnz
5Fvx

vz
S nr1

1

2D1S nz1
1

2D GCnrnz

2
1

2

vx

vz
(

mr50

Nr S 1

r

df2mr

dr
,f2nr

D
L2

Cmrnz
.

Let us remark that the scalar produ
„(1/r )(df2mr

/dr),fnr
…L2 is well defined since the first de

rivative of f2nr
is of the formrP2nr

(r )e2r 2/2 whereP2nr
is a

polynomial of degree 2nr ; in addition, it can be computed
exactly by numerical integration with 2nr Gauss points. It is
worth pointing out that the ‘‘Hamiltonian’’ in Eq.~16! is not
self-adjoint because of the term2(1/2r )(]/]r ) and that the
L2 norm of x(t) is not a conserved quantity; on the oth
hand, theL2 norm of x(t) for the measure r dr dzis con-
served.

III. TIME DISCRETIZATION

When a spectral-Galerkin method is used to discretize
space variables, one ends up with a finite-dimensional
namical system of the form

i
dC

dt
~ t !5hC~ t !1lF„C~ t !…, ~17!

with initial condition C(t50)5C0. We then use a basi
fourth-order Runge-Kutta method@32# to solve Eq.~17!. Let
us mention that, as the Hamiltonian character of the NLSE
preserved by the spectral-Galerkin discretization, it would
possible to resort to symplectic methods@33#; such algo-
rithms, which are particularly advised for long time evol
tion, are, however, not tested in the present work.

We will also use a grid method, based on the sp
operator method, to serve as a benchmark for the spe
algorithm we have just detailed. We recall below the m
features of this approach.

The wave function at timet1Dt can be obtained from
the wave function att according to

c~t1Dt!5Û~t,t1Dt!c~t!, ~18!

with the propagatorÛ(t,t1Dt) being expressed, for suffi
ciently small intervalsDt, as

Û~t,t1Dt!5exp@2 iH ~t!Dt#, ~19!

whereH(t) is the Hamiltonian of Eq.~4!. As the potential
and nonlinear components of the Gross-Pitaevskii Ham
tonian do not commute with the kinetic operator, we ap
the split-operator method@34# to obtain
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exp@2 iH ~t!Dt#5expF2 iT
Dt

2 Gexp@2 i ~V1lucu2!Dt#

3expF2 iT
Dt

2 G1O~Dt3!, ~20!

with T the kinetic operator andV the trapping potential. The
middle term is diagonal in position space, while the kine
part is diagonal in momentum space. A fast Fourier tra
form is thus used before application of the kinetic opera
followed by the inverse transform. Note that if the interm
diate wave function at timet1Dt is not needed, the two
successive kinetic operators half steps can be combi
From a previous study@35#, it appears that the split-operato
method is the fastest algorithm for solving a NLSE on a gr

IV. RESULTS

The first test we perform is the propagation of the grou
stationary state ~obtained from the time-independen
GPE solved by a method based on the optimal damping
gorithm @36–38#!, while monitoring the value of the coeffi
cientsc(t) of the expansion~13!. For the spherically sym-
metric case, we require that the relative error on thec0
coefficient~which has the largest absolute value! be inferior
to 1028, i.e., uuc0(t)u22uc0(t50)u2u/uc0(t50)u2<1028;t
P@0,100#. This criterion also results in an absolute error
all coefficientsucn(t)u22ucn(t50)u2<1028. We have also
checked that the phase of the coefficients is correct, by
culating ucn(t)2cn(t50)e2 imtu2/ucn(t)u2, wherem is the
chemical potential of the ground stationary state of the G
@6#, and this value indeed is less than 10212.

In this 1D case, we needN520 basis functions forl
5100, and the resulting time step for the Runge-Ku
propagator isDt50.005. If l51000, the basis set use
should be slightly larger,N526, with a smaller time step
Dt50.0025 to insure that the above error criteria are m
The resulting propagation time up tot5100 is 8.9 s forl
5100 ~calculated on an Athlon 1.2 GHz processor runni
under Linux, using the NAG Fortran 95 compiler at the2O2
level of optimization! and 28.3 s forl51000. If we double
the size of the basis set, we get a CPU time of 32.9 s fol
5100, showing the expectedO(N2) scaling of the algorithm
in 1D.

Comparing now with the grid method described in Se
III, we useNp564 grid points in the range28<r<8. The
time step used isDt50.000 25, resulting in a propagatio
time of 10.3 s, which is slightly longer than what we obta
using the Runge-Kutta method.

We now apply our algorithm to study the dynamics
trapped condensates. Referring again to the spherically s
metric case, we start with the stationary ground state for
isotropic trap frequencyv. We then let this initial statec0
evolve in a trap of frequencyv/2, as illustrated in Fig. 1,
corresponding to an experiment where the frequency of
potential trapping the condensate would be instantaneo
reduced by a factor of 2. The corresponding time-evolv
wave functionuc(t,r )u2 is shown in Fig. 2, forl510. We
must note that the values ofl we give correspond to the
6-6
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SPECTRAL METHOD FOR THE TIME-DEPENDENT . . . PHYSICAL REVIEW E 67, 046706 ~2003!
condensate in the initialv-frequency trap, the effective valu
being used for the time evolution is thus scaled by 1/A2 @see
Eq. ~5!#, while t is rescaled with respect to the final tra
frequencyv/2. We can see the ‘‘breathing’’ of the conde
sate as it expands and recontracts in the trap.

It is also interesting to look at the effect of the value of t
nonlinear parameter on the breathing frequency of the c
densate, as seen in Fig. 3. First, we note that the initial d
sity at the center of the trap is lower for bigger values ofl,
which is expected because of the corresponding higher in

FIG. 1. Trapping potentialsv ~solid line! andv/2 ~dashed line!
used to simulate the breathing modes of a condensate. The
function uc(r )u2 of the stationary state for potentialv with l
5100 is also given~dotted line!.

FIG. 2. ‘‘Breathing’’ of the condensate after expansion from
trap of frequencyv to v/2. The density profileuc(r )u2 is given as
a function of timet ~scaled with respect to the final trap frequen
v/2) for an initial l510 ground stationary state.
04670
n-
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particle repulsion. Starting from an unperturbed harmo
oscillator (l50), for which the complete cycle time ist
54p with recurrences everyt5p, we observe that the os
cillation frequency of the condensate in the trap increa
with a greater value ofl.

For the 3D case, we will study the scissor mode@39,40# of
a trapped condensate. We consider a pancake-shaped
densate, formed in an anisotropic trap withvx5vy!vz , see
Fig. 4. They and z axes of the trap are instantaneously r
tated, att50, by an angleu around thex axis. The conden-
sate then starts to oscillate in the trap, leading to the
called scissor mode.

ve

FIG. 3. ‘‘Breathing’’ of the condensate after expansion from
trap of frequencyv to v/2. The value of the wave function in th
center of the trap,uc(r 50)u2, is given as a function of timet
~scaled with respect to the final trap frequencyv/2) for l equal to
0 ~solid line!, 10 ~dotted line!, 100 ~dashed line!, and 1000~dot-
dashed line!.

FIG. 4. Representation of the study a condensate’s scissor m
The condensate is initially tilted with respect to the trap’sy and z
axes by an angleu.
6-7
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C. M. DION AND E. CANCÈS PHYSICAL REVIEW E67, 046706 ~2003!
Using the parameters of the experiment of Marago` et al.
@40#, we first determine the stationary state for a condens
of N5104 87Rb atoms in a trap withvz5255 Hz, vx /vz

5vy /vz51/A8, resulting in a valuel5147.1. The conden
sate is then tilted by an angle ofu53.6°, with the trapping
frequencyvz reduced by 2%, resulting in a new value ofl
5148.6. We then calculate the free evolution of this tilt
condensate. We report, in Fig. 5, the angle between the
densate~as determined by the main inertia axis! and they
axis, as a function of time for the free evolution of the co
densate in a trap. The oscillation frequency, in these co
tions, is found to be 1.105~in rescaled units!, corresponding
to 276 Hz. This simulation was done using a basis set oN
529 functions in each dimension, using a time stepDt
50.005. The calculation time for a propagation of durationt
is then'1735 s. The main advantage of using a spect
Galerkin method, as noted in Sec. II B, is that in this case
can restrict the basis set in thex dimension by using only
even harmonic-oscillator functions, since the reflection sy
metry with respect to theyOz plane is conserved. The num
ber of functions is thus reduced toNx515, resulting in a
decrease of CPU time to'1030 s for 1t. This compares
favorably with the grid method, for which an equivalent ca
culation with 64364364 grid points takes'1700 s~using
the same time step and grid spacing as for the 1D g
method!.

V. CONCLUSION

We have presented the application of a spectral-Gale
method to the numerical solution of the Gross-Pitaevs
equation, describing a Bose-Einstein condensate~BEC!
trapped in a harmonic potential well. This method is bas
on the decomposition of the condensate wave function on
a basis set of eigenmodes of the harmonic oscillator, w
the nonlinear term in the GPE is calculated using the Ga
Hermite quadrature. The resulting algorithm scales inO(N4)
for a full 3D problem~whereN is the number of basis func
tions used per direction!, which is slightly worse than the
O(Np

3log2 Np) scaling obtained for grid-based Fourier met
ods. Nevertheless, the required number of basis funct
needed for a given problem can be much smaller than
number of grid pointsNp , allowing for fast and efficient
calculations using the spectral method. We have shown
the propagation in time can be carried out using a Run
Kutta method on a set of coupled ordinary differential eq
tions.

This method is akin to the DVR approach@21,22#, which
relies on the fact that matrix elements of the nonlinear te
can beapproximatelyevaluated to sufficiently high accurac
using anN-point rule based Gauss quadrature. Our appro
has the advantage that, for the basis chosen, there ar
an

ys
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approximations in the computation of these integrals. Let
however, remark that the same property can hold within
DVR method by a suitable choice of weighted polynomia
The main distinction between the usual DVR approach a
our method is that we treat the kinetic and potential terms
the Hamiltonian conjointly, as detailed in Sec. II.

We have successfully applied our algorithm to simula
two different dynamical aspects of trapped BECs. Maki
use of the spherical symmetry of an isotropic trapping pot
tial, we used an effective 1D equation to study the breath
of a condensate that is allowed to expand from more con
ing trap to a looser one. In the 3D case, we have looked
the scissor modes of a pancake-shaped condensate, for w
the trapping potential is suddenly rotated along one axis

Future work will focus on the implementation of bett
time-evolution algorithms on our spectral method and on
possible parallelization. Extensions will also be made to c
sider other terms in the Gross-Pitaevskii Hamiltonian, su
as the potential created by the interaction with a laser fie
or coupled Gross-Pitaevskii equations used in the simula
of two-species condensates@41# or of the formation of mol-
ecules in atomic condensates@42,43#.
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FIG. 5. Time evolution of the angleu for the scissor mode. The
crosses correspond to the angle resulting from the time-depen
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~dashed line!.
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